3.678 \(\int \frac{(d+e x)^{5/2}}{(f+g x)^3 (a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=342 \[ \frac{35 c^2 d^2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{4 (c d f-a e g)^{9/2}}+\frac{35 c d g^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 \sqrt{d+e x} (f+g x) (c d f-a e g)^4}+\frac{35 g^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{6 \sqrt{d+e x} (f+g x)^2 (c d f-a e g)^3}+\frac{14 g \sqrt{d+e x}}{3 (f+g x)^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}-\frac{2 (d+e x)^{3/2}}{3 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)} \]

[Out]

(-2*(d + e*x)^(3/2))/(3*(c*d*f - a*e*g)*(f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (14*g*Sqr
t[d + e*x])/(3*(c*d*f - a*e*g)^2*(f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (35*g^2*Sqrt[a*d*e
 + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(6*(c*d*f - a*e*g)^3*Sqrt[d + e*x]*(f + g*x)^2) + (35*c*d*g^2*Sqrt[a*d*e +
(c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*(c*d*f - a*e*g)^4*Sqrt[d + e*x]*(f + g*x)) + (35*c^2*d^2*g^(3/2)*ArcTan[(Sq
rt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(4*(c*d*f - a*e*g)^(9
/2))

________________________________________________________________________________________

Rubi [A]  time = 0.538171, antiderivative size = 342, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {868, 872, 874, 205} \[ \frac{35 c^2 d^2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{4 (c d f-a e g)^{9/2}}+\frac{35 c d g^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 \sqrt{d+e x} (f+g x) (c d f-a e g)^4}+\frac{35 g^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{6 \sqrt{d+e x} (f+g x)^2 (c d f-a e g)^3}+\frac{14 g \sqrt{d+e x}}{3 (f+g x)^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)^2}-\frac{2 (d+e x)^{3/2}}{3 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2} (c d f-a e g)} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(5/2)/((f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]

[Out]

(-2*(d + e*x)^(3/2))/(3*(c*d*f - a*e*g)*(f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (14*g*Sqr
t[d + e*x])/(3*(c*d*f - a*e*g)^2*(f + g*x)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (35*g^2*Sqrt[a*d*e
 + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(6*(c*d*f - a*e*g)^3*Sqrt[d + e*x]*(f + g*x)^2) + (35*c*d*g^2*Sqrt[a*d*e +
(c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*(c*d*f - a*e*g)^4*Sqrt[d + e*x]*(f + g*x)) + (35*c^2*d^2*g^(3/2)*ArcTan[(Sq
rt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(4*(c*d*f - a*e*g)^(9
/2))

Rule 868

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(c*e*f + c*d*g - b*e*g)), x]
 + Dist[(e^2*g*(m - n - 2))/((p + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*
x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[
c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[p, -1] && RationalQ[n]

Rule 872

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((n + 1)*(c*e*f + c*d*g - b*e*g)), x
] - Dist[(c*e*(m - n - 2))/((n + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x
^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^
2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{5/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{(7 g) \int \frac{(d+e x)^{3/2}}{(f+g x)^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 (c d f-a e g)}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{14 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{\left (35 g^2\right ) \int \frac{\sqrt{d+e x}}{(f+g x)^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{3 (c d f-a e g)^2}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{14 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{35 g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt{d+e x} (f+g x)^2}+\frac{\left (35 c d g^2\right ) \int \frac{\sqrt{d+e x}}{(f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{4 (c d f-a e g)^3}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{14 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{35 g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt{d+e x} (f+g x)^2}+\frac{35 c d g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^4 \sqrt{d+e x} (f+g x)}+\frac{\left (35 c^2 d^2 g^2\right ) \int \frac{\sqrt{d+e x}}{(f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 (c d f-a e g)^4}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{14 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{35 g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt{d+e x} (f+g x)^2}+\frac{35 c d g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^4 \sqrt{d+e x} (f+g x)}+\frac{\left (35 c^2 d^2 e^2 g^2\right ) \operatorname{Subst}\left (\int \frac{1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}}\right )}{4 (c d f-a e g)^4}\\ &=-\frac{2 (d+e x)^{3/2}}{3 (c d f-a e g) (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{14 g \sqrt{d+e x}}{3 (c d f-a e g)^2 (f+g x)^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{35 g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{6 (c d f-a e g)^3 \sqrt{d+e x} (f+g x)^2}+\frac{35 c d g^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 (c d f-a e g)^4 \sqrt{d+e x} (f+g x)}+\frac{35 c^2 d^2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{c d f-a e g} \sqrt{d+e x}}\right )}{4 (c d f-a e g)^{9/2}}\\ \end{align*}

Mathematica [C]  time = 0.0540707, size = 79, normalized size = 0.23 \[ -\frac{2 c^2 d^2 (d+e x)^{3/2} \, _2F_1\left (-\frac{3}{2},3;-\frac{1}{2};\frac{g (a e+c d x)}{a e g-c d f}\right )}{3 ((d+e x) (a e+c d x))^{3/2} (c d f-a e g)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(5/2)/((f + g*x)^3*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)),x]

[Out]

(-2*c^2*d^2*(d + e*x)^(3/2)*Hypergeometric2F1[-3/2, 3, -1/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)])/(3*(c*d*f
- a*e*g)^3*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.348, size = 670, normalized size = 2. \begin{align*} -{\frac{1}{12\, \left ( cdx+ae \right ) ^{2} \left ( aeg-cdf \right ) ^{4} \left ( gx+f \right ) ^{2}}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade} \left ( 105\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){x}^{3}{c}^{3}{d}^{3}{g}^{4}\sqrt{cdx+ae}+105\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){x}^{2}a{c}^{2}{d}^{2}e{g}^{4}\sqrt{cdx+ae}+210\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){x}^{2}{c}^{3}{d}^{3}f{g}^{3}\sqrt{cdx+ae}+210\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) xa{c}^{2}{d}^{2}ef{g}^{3}\sqrt{cdx+ae}+105\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) x{c}^{3}{d}^{3}{f}^{2}{g}^{2}\sqrt{cdx+ae}-105\,\sqrt{ \left ( aeg-cdf \right ) g}{x}^{3}{c}^{3}{d}^{3}{g}^{3}+105\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) a{c}^{2}{d}^{2}e{f}^{2}{g}^{2}\sqrt{cdx+ae}-140\,\sqrt{ \left ( aeg-cdf \right ) g}{x}^{2}a{c}^{2}{d}^{2}e{g}^{3}-175\,\sqrt{ \left ( aeg-cdf \right ) g}{x}^{2}{c}^{3}{d}^{3}f{g}^{2}-21\,\sqrt{ \left ( aeg-cdf \right ) g}x{a}^{2}cd{e}^{2}{g}^{3}-238\,\sqrt{ \left ( aeg-cdf \right ) g}xa{c}^{2}{d}^{2}ef{g}^{2}-56\,\sqrt{ \left ( aeg-cdf \right ) g}x{c}^{3}{d}^{3}{f}^{2}g+6\,\sqrt{ \left ( aeg-cdf \right ) g}{a}^{3}{e}^{3}{g}^{3}-39\,\sqrt{ \left ( aeg-cdf \right ) g}{a}^{2}cd{e}^{2}f{g}^{2}-80\,\sqrt{ \left ( aeg-cdf \right ) g}a{c}^{2}{d}^{2}e{f}^{2}g+8\,\sqrt{ \left ( aeg-cdf \right ) g}{c}^{3}{d}^{3}{f}^{3} \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{ \left ( aeg-cdf \right ) g}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

-1/12*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(105*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x^3*c^
3*d^3*g^4*(c*d*x+a*e)^(1/2)+105*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x^2*a*c^2*d^2*e*g^4*(c*d*
x+a*e)^(1/2)+210*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x^2*c^3*d^3*f*g^3*(c*d*x+a*e)^(1/2)+210*
arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x*a*c^2*d^2*e*f*g^3*(c*d*x+a*e)^(1/2)+105*arctanh((c*d*x+
a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x*c^3*d^3*f^2*g^2*(c*d*x+a*e)^(1/2)-105*((a*e*g-c*d*f)*g)^(1/2)*x^3*c^3*
d^3*g^3+105*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*a*c^2*d^2*e*f^2*g^2*(c*d*x+a*e)^(1/2)-140*((a
*e*g-c*d*f)*g)^(1/2)*x^2*a*c^2*d^2*e*g^3-175*((a*e*g-c*d*f)*g)^(1/2)*x^2*c^3*d^3*f*g^2-21*((a*e*g-c*d*f)*g)^(1
/2)*x*a^2*c*d*e^2*g^3-238*((a*e*g-c*d*f)*g)^(1/2)*x*a*c^2*d^2*e*f*g^2-56*((a*e*g-c*d*f)*g)^(1/2)*x*c^3*d^3*f^2
*g+6*((a*e*g-c*d*f)*g)^(1/2)*a^3*e^3*g^3-39*((a*e*g-c*d*f)*g)^(1/2)*a^2*c*d*e^2*f*g^2-80*((a*e*g-c*d*f)*g)^(1/
2)*a*c^2*d^2*e*f^2*g+8*((a*e*g-c*d*f)*g)^(1/2)*c^3*d^3*f^3)/(e*x+d)^(1/2)/(c*d*x+a*e)^2/(a*e*g-c*d*f)^4/(g*x+f
)^2/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{5}{2}}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}{\left (g x + f\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)*(g*x + f)^3), x)

________________________________________________________________________________________

Fricas [B]  time = 2.14563, size = 5742, normalized size = 16.79 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

[1/24*(105*(c^4*d^4*e*g^3*x^5 + a^2*c^2*d^3*e^2*f^2*g + (2*c^4*d^4*e*f*g^2 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*g^3)*
x^4 + (c^4*d^4*e*f^2*g + 2*(c^4*d^5 + 2*a*c^3*d^3*e^2)*f*g^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*g^3)*x^3 + (a
^2*c^2*d^3*e^2*g^3 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*f^2*g + 2*(2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*f*g^2)*x^2 + (2*a
^2*c^2*d^3*e^2*f*g^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*f^2*g)*x)*sqrt(-g/(c*d*f - a*e*g))*log(-(c*d*e*g*x^2
- c*d^2*f + 2*a*d*e*g + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(-g/(c
*d*f - a*e*g)) - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(105*c^3*d^3*g^3*x^3
- 8*c^3*d^3*f^3 + 80*a*c^2*d^2*e*f^2*g + 39*a^2*c*d*e^2*f*g^2 - 6*a^3*e^3*g^3 + 35*(5*c^3*d^3*f*g^2 + 4*a*c^2*
d^2*e*g^3)*x^2 + 7*(8*c^3*d^3*f^2*g + 34*a*c^2*d^2*e*f*g^2 + 3*a^2*c*d*e^2*g^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c
*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a^2*c^4*d^5*e^2*f^6 - 4*a^3*c^3*d^4*e^3*f^5*g + 6*a^4*c^2*d^3*e^4*f^4*g^2 - 4
*a^5*c*d^2*e^5*f^3*g^3 + a^6*d*e^6*f^2*g^4 + (c^6*d^6*e*f^4*g^2 - 4*a*c^5*d^5*e^2*f^3*g^3 + 6*a^2*c^4*d^4*e^3*
f^2*g^4 - 4*a^3*c^3*d^3*e^4*f*g^5 + a^4*c^2*d^2*e^5*g^6)*x^5 + (2*c^6*d^6*e*f^5*g + (c^6*d^7 - 6*a*c^5*d^5*e^2
)*f^4*g^2 - 4*(a*c^5*d^6*e - a^2*c^4*d^4*e^3)*f^3*g^3 + 2*(3*a^2*c^4*d^5*e^2 + 2*a^3*c^3*d^3*e^4)*f^2*g^4 - 2*
(2*a^3*c^3*d^4*e^3 + 3*a^4*c^2*d^2*e^5)*f*g^5 + (a^4*c^2*d^3*e^4 + 2*a^5*c*d*e^6)*g^6)*x^4 + (c^6*d^6*e*f^6 +
2*c^6*d^7*f^5*g - 6*a^4*c^2*d^3*e^4*f*g^5 - 3*(2*a*c^5*d^6*e + 3*a^2*c^4*d^4*e^3)*f^4*g^2 + 4*(a^2*c^4*d^5*e^2
 + 4*a^3*c^3*d^3*e^4)*f^3*g^3 + (4*a^3*c^3*d^4*e^3 - 9*a^4*c^2*d^2*e^5)*f^2*g^4 + (2*a^5*c*d^2*e^5 + a^6*e^7)*
g^6)*x^3 - (6*a^2*c^4*d^4*e^3*f^5*g - 2*a^6*e^7*f*g^5 - a^6*d*e^6*g^6 - (c^6*d^7 + 2*a*c^5*d^5*e^2)*f^6 + (9*a
^2*c^4*d^5*e^2 - 4*a^3*c^3*d^3*e^4)*f^4*g^2 - 4*(4*a^3*c^3*d^4*e^3 + a^4*c^2*d^2*e^5)*f^3*g^3 + 3*(3*a^4*c^2*d
^3*e^4 + 2*a^5*c*d*e^6)*f^2*g^4)*x^2 + (2*a^6*d*e^6*f*g^5 + (2*a*c^5*d^6*e + a^2*c^4*d^4*e^3)*f^6 - 2*(3*a^2*c
^4*d^5*e^2 + 2*a^3*c^3*d^3*e^4)*f^5*g + 2*(2*a^3*c^3*d^4*e^3 + 3*a^4*c^2*d^2*e^5)*f^4*g^2 + 4*(a^4*c^2*d^3*e^4
 - a^5*c*d*e^6)*f^3*g^3 - (6*a^5*c*d^2*e^5 - a^6*e^7)*f^2*g^4)*x), 1/12*(105*(c^4*d^4*e*g^3*x^5 + a^2*c^2*d^3*
e^2*f^2*g + (2*c^4*d^4*e*f*g^2 + (c^4*d^5 + 2*a*c^3*d^3*e^2)*g^3)*x^4 + (c^4*d^4*e*f^2*g + 2*(c^4*d^5 + 2*a*c^
3*d^3*e^2)*f*g^2 + (2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*g^3)*x^3 + (a^2*c^2*d^3*e^2*g^3 + (c^4*d^5 + 2*a*c^3*d^3*
e^2)*f^2*g + 2*(2*a*c^3*d^4*e + a^2*c^2*d^2*e^3)*f*g^2)*x^2 + (2*a^2*c^2*d^3*e^2*f*g^2 + (2*a*c^3*d^4*e + a^2*
c^2*d^2*e^3)*f^2*g)*x)*sqrt(g/(c*d*f - a*e*g))*arctan(-sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*
e*g)*sqrt(e*x + d)*sqrt(g/(c*d*f - a*e*g))/(c*d*e*g*x^2 + a*d*e*g + (c*d^2 + a*e^2)*g*x)) + (105*c^3*d^3*g^3*x
^3 - 8*c^3*d^3*f^3 + 80*a*c^2*d^2*e*f^2*g + 39*a^2*c*d*e^2*f*g^2 - 6*a^3*e^3*g^3 + 35*(5*c^3*d^3*f*g^2 + 4*a*c
^2*d^2*e*g^3)*x^2 + 7*(8*c^3*d^3*f^2*g + 34*a*c^2*d^2*e*f*g^2 + 3*a^2*c*d*e^2*g^3)*x)*sqrt(c*d*e*x^2 + a*d*e +
 (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a^2*c^4*d^5*e^2*f^6 - 4*a^3*c^3*d^4*e^3*f^5*g + 6*a^4*c^2*d^3*e^4*f^4*g^2
- 4*a^5*c*d^2*e^5*f^3*g^3 + a^6*d*e^6*f^2*g^4 + (c^6*d^6*e*f^4*g^2 - 4*a*c^5*d^5*e^2*f^3*g^3 + 6*a^2*c^4*d^4*e
^3*f^2*g^4 - 4*a^3*c^3*d^3*e^4*f*g^5 + a^4*c^2*d^2*e^5*g^6)*x^5 + (2*c^6*d^6*e*f^5*g + (c^6*d^7 - 6*a*c^5*d^5*
e^2)*f^4*g^2 - 4*(a*c^5*d^6*e - a^2*c^4*d^4*e^3)*f^3*g^3 + 2*(3*a^2*c^4*d^5*e^2 + 2*a^3*c^3*d^3*e^4)*f^2*g^4 -
 2*(2*a^3*c^3*d^4*e^3 + 3*a^4*c^2*d^2*e^5)*f*g^5 + (a^4*c^2*d^3*e^4 + 2*a^5*c*d*e^6)*g^6)*x^4 + (c^6*d^6*e*f^6
 + 2*c^6*d^7*f^5*g - 6*a^4*c^2*d^3*e^4*f*g^5 - 3*(2*a*c^5*d^6*e + 3*a^2*c^4*d^4*e^3)*f^4*g^2 + 4*(a^2*c^4*d^5*
e^2 + 4*a^3*c^3*d^3*e^4)*f^3*g^3 + (4*a^3*c^3*d^4*e^3 - 9*a^4*c^2*d^2*e^5)*f^2*g^4 + (2*a^5*c*d^2*e^5 + a^6*e^
7)*g^6)*x^3 - (6*a^2*c^4*d^4*e^3*f^5*g - 2*a^6*e^7*f*g^5 - a^6*d*e^6*g^6 - (c^6*d^7 + 2*a*c^5*d^5*e^2)*f^6 + (
9*a^2*c^4*d^5*e^2 - 4*a^3*c^3*d^3*e^4)*f^4*g^2 - 4*(4*a^3*c^3*d^4*e^3 + a^4*c^2*d^2*e^5)*f^3*g^3 + 3*(3*a^4*c^
2*d^3*e^4 + 2*a^5*c*d*e^6)*f^2*g^4)*x^2 + (2*a^6*d*e^6*f*g^5 + (2*a*c^5*d^6*e + a^2*c^4*d^4*e^3)*f^6 - 2*(3*a^
2*c^4*d^5*e^2 + 2*a^3*c^3*d^3*e^4)*f^5*g + 2*(2*a^3*c^3*d^4*e^3 + 3*a^4*c^2*d^2*e^5)*f^4*g^2 + 4*(a^4*c^2*d^3*
e^4 - a^5*c*d*e^6)*f^3*g^3 - (6*a^5*c*d^2*e^5 - a^6*e^7)*f^2*g^4)*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)/(g*x+f)**3/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)/(g*x+f)^3/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x